Mating pheromones of Saccharomyces kluyveri: pheromone interactions between Saccharomyces kluyveri and Saccharomyces cerevisiae.
نویسندگان
چکیده
Saccharomyces kluyveri is a heterothallic yeast with two allelic mating types denoted as a-k and alpha-k by analogy with Saccharomyces cerevisiae and from the work described here. S. kluyveri produces mating pheromones analogous to those of S. cerevisiae, but which appear to have different specificity. S. kluyveri thus differs from S. cerevisiae, Hansenula wingei, and Schizosaccharomyces pombe in that it exhibits both strong constitutive agglutination and mating pheromones. alpha-k cells produce a pheromone ("alpha-k-factor") which causes a-k cells to arrest in the G1 phase of the cell cycle and to undergo a morphological change. After a period of time dependent on the concentration of alpha-k-factor, cells exposed to the factor resume cell division. alpha-k-factor has no effect on a-k/alpha-k diploids or on alpha-k cells, but at high concentration does induce G1 arrest of S. cerevisiaea cells (a-c). a-k cells produce a pheromone ("a-k-factor") which causes alpha-k cells to exhibit a morphological change. In addition, a-k cells exhibit the Bar phenotype with respect to alpha-k-factor. Partially purified preparations of S. cerevisiae alpha-factor are more active in inducing G1 arrest of a-k cells than of a-c cells. A more purified preparation of alpha-c-factor is less active against a-k cells than a-c cells, suggesting that an additional factor (KRE, kluyveri response enhancer) may be lost during purification. Attempts to mate S. kluyveri and S. cerevisiae cells by prototroph selection and by cell-to-cell mating have been unsuccessful with all combinations of mating types. Thus, S. cerevisiae and S. kluyveri are incompatible for mating even though their pheromones exhibit some physiological cross-reaction.
منابع مشابه
Evolution of intraspecific transcriptomic landscapes in yeasts
Variations in gene expression have been widely explored in order to obtain an accurate overview of the changes in regulatory networks that underlie phenotypic diversity. Numerous studies have characterized differences in genomic expression between large numbers of individuals of model organisms such as Saccharomyces cerevisiae. To more broadly survey the evolution of the transcriptomic landscap...
متن کاملLarge-Scale Survey of Intraspecific Fitness and Cell Morphology Variation in a Protoploid Yeast Species
It is now clear that the exploration of the genetic and phenotypic diversity of nonmodel species greatly improves our knowledge in biology. In this context, we recently launched a population genomic analysis of the protoploid yeast Lachancea kluyveri (formerly Saccharomyces kluyveri), highlighting a broad genetic diversity (π = 17 × 10(-3)) compared to the yeast model organism, S. cerevisiae (π...
متن کاملInactivation of Sexual Agglutination in Hansenula Wingei and Saccharomyces Kluyveri by Disulfide-cleaving Agents.
Taylor, Neil W. (Northern Regional Research Laboratory, Peoria, Ill.). Inactivation of sexual agglutination in Hansenula wingei and Saccharomyces kluyveri by disulfide-cleaving agents. J. Bacteriol. 88:929-936. 1964.-Mating types of both Hansenula wingei and Saccharomyces kluyveri can be activated to produce uniformly strong sexual agglutination by treatments with various solvents, such as 8 m ...
متن کاملAsymmetry in Sexual Pheromones Is Not Required for Ascomycete Mating
BACKGROUND We investigated the determinants of sexual identity in the budding yeast Saccharomyces cerevisiae. The higher fungi are divided into the ascomycetes and the basidiomycetes. Most ascomycetes have two mating types: one (called α in yeasts and MAT1-1 in filamentous fungi) produces a small, unmodified, peptide pheromone, and the other (a in yeasts and MAT1-2 in filamentous fungi) produce...
متن کاملPheromones and pheromone receptors are the primary determinants of mating specificity in the yeast Saccharomyces cerevisiae.
Saccharomyces cerevisiae has two haploid cell types, a and alpha, each of which produces a unique set of proteins that participate in the mating process. We sought to determine the minimum set of proteins that must be expressed to allow mating and to confer specificity. We show that the capacity to synthesize alpha-factor pheromone and a-factor receptor is sufficient to allow mating by mat alph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 138 1 شماره
صفحات -
تاریخ انتشار 1979